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Author′s note to anybody reading this document for information about
Linkage Disequilibrium.

You will find this document full of statements such as
”I did this .. I did that .. blah blah”.
I apologise for this, but the reason is that this document is one chapter
of my PIFFLE (www.handsongenetics.com/PIFFLE) written to sum-
marise genetics projects that I have been involved in. It′s supposed
to be a personal account, and so is inappropriately pretentious. When
writing, I did not anticipate that this discussion of LD might be found
from a Google search, independently from the introduction and overall
web document.

The last two sections contain largely unpublished material. I would be
very pleased if anybody is interested in following up on any of this. It is
a consequence that I did not anticipate, that putting such unreviewed
material online might deter the publishing of related work. I will not be
trying to publish any of this material, and would be disappointed if its
presentation in this way deters anybody from working and publishing
on these topics. You could maybe add an acknowledgement (J. Sved,
pers. comm.) should you use anything. Please write if in doubt.
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0.1. Preface.

LD is a huge topic that has expended enormously in the last decade
or two. What started out as an obscure topic of interest to only a few
theoretical population geneticists has turned out to have important ap-
plications, particularly in gene mapping. A 2018 review by Bill Hill and
myself in Genetics Perspectives [39] summarises some of this history.
The genesis of this review was the recognition that the initial calcula-
tions on LD came 100 years earlier (Robbins, 1918), while 50 years later
Bill and I independently published papers (Hill and Robertson, 1968;
Sved, 1968) noting that LD is expected to be ubiquitous due simply
to population structure. The important applications in gene mapping,
which Bill knows much more about than I do, depend on this finding,
although perhaps only in a rather trivial way.



LINKAGE DISEQUILIBRIUM (LD) 3

This document concentrates on those parts of LD theory that I have
been involved in. It’s rather long, because later sections go into consid-
erable detail on unpublished, and probably unpublishable, work.

1. LD THEORY

1.1. Early theory.
Genes that are closely linked may or may not be associated in popula-
tions. Looking at parents and offspring, if genes at closely linked loci
are together in the parent then they will usually be together in the off-
spring. But looking at individuals in a population with no known com-
mon ancestry, it is much more difficult to see any relationships.

Suppose that there is an allele A with frequency pA in a particular
population. At a closely linked locus, the frequency of the B allele is
pB. The question is, what is the expected frequency of the allele pair,
or ’haplotype’, AB?

It has been known since 1918 that even for loci that are closely linked,
alleles at the two loci are expected to be ’associated at random’ in the
population. In other words, the expected frequency of the AB genotype
(haplotype), pAB, is pA multiplied by pB, just as if the A and B loci
were unlinked.

It is reasonably easy to see why this should be true. We start by defin-
ing a new parameter, d, which goes under the slightly awkward name
of the ’coefficient of linkage disequilibrium’, and is defined as

d = pAB − pApB

which is the difference between the frequency of the AB haplotype, pAB,
and its expectation pApB if there is no LD. Note that this parameter
is often denoted as D rather than d.

What Robbins showed in 1918 is that if the recombination frequency
between the two loci is c, then

d′ = (1 − c).d (1)

where d′ is the corresponding coefficient one generation later. Crow
and Kimura in their 1970 textbook [3] have a two-line derivation of
this relationship. With probability c the gamete is a recombinant.
Assuming random mating, the A gene is therefore combined with a
random B gene, giving the probability of AB in the next generation
as pApB . Amongst gametes with no recombination, the frequency of
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the AB haplotype stays the same. Overall the frequency of the AB
haplotype in the next generation is

p′AB = cpApB + (1 − c)pAB

and this rearranges to give equation (1). Note that all this assumes
that the population size is infinite.

Since c, the recombination frequency, is some small positive number,
the quantity (1 − c) will be less than unity, and the coefficient d is
expected to fall in each generation. Eventually it will reach zero, al-
though this may take some time for very closely linked loci. It is for
this reason that it is expected that even closely linked alleles are ex-
pected to be in ’linkage equilibrium’ (LE), at least in populations that
have been around for some time.

One exception to this expectation has been known since the 1950s. If
there is selection, and the allele pair AB is favoured, then if the loci
are sufficiently closely linked, natural selection may lead to a situation
in which the A and B alleles are closely associated, so that d is some
positive quantity. However this assumes that there is a substantial level
of selective interaction between closely linked loci, which is only to be
expected for a small minority of gene pairs.

1.2. Fifty years of LE and fifty years of LD.
I’m using this title to describe what was formalised in the papers of
Hill and Robertson (1968), Sved (1968) and Ohta and Kimura (1969).
Suddenly it became clear that LD, rather than a rare event, had to be
everywhere. One has to go back a year or two, however, to the papers
of Lewontin and Hubby (1966) and Harris (1966) to understand the
background to this paradigm shift.

Prior to Lewontin, Hubby and Harris, I don’t believe that much thought
had been given to quantifying how much variability there is in natu-
ral populations. The underlying DNA structure of chromosomes, with
their millions of bases, had been known for some time. But little at-
tention had been paid to how many of these bases were polymorphic in
actual populations. I suspect that if you had asked somebody to quan-
tify what a population of chromosomes looks like, they would have
come up with something like the first of the two diagrams below.

What Lewontin and Hubby did was to follow a bunch of enzymes that
could be visualised on a gel, and to quantify how many had detectable
variation in a Drosophila population. They found that around one third
were polymorphic. Harris found a similar figure in human enzymes. So,
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What a population looks like (pre-molecular era) 
(single chromosome) 

What a population looks like (post 1966) 

suddenly, it was clear that a more realistic picture of what a population
looked like was the second figure. The reality at the DNA level of
millions of polymorphic sites on a chromosome makes it impossible to
picture a whole chromosome. Clearly the opportunity for LD between
closely linked sites is vastly higher in the second figure.
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I must have started to think about populations of this type sometime
after the Lewontin and Hubby paper, although I don’t recall the cir-
cumstances. But I suddenly realised that there was an enormous effect
that was being ignored in the 1918 argument predicting that LD would
be systematically decreased over generations. What would happen if
you had lots of very closely linked loci, and the population was small?
It seemed immediately clear that even if you started off with complete
linkage equilibrium, this couldn’t be maintained for long.

I’ll show a small simulation that illustrates the effect. Suppose, for ex-
ample, that a population of 20 chromosome types was started in linkage
equilibrium. Then the chromosomes might be something like the first
of the three diagrams below. Generations are then simulated under
the usual Wright-Fisher model assuming no recombination. After 10
generations, many of the initial chromosome types have been lost, and
after 20 generations the population is down to two types. The diagram
is simplified by omitting colours of the sites that are fixed and thus add
nothing to the LD statistics.

The amazing thing about the population at this last pictured stage
is that no matter what pair you look at, the loci are in total linkage
disequilibrium, as far removed as possible from the initial state of link-
age equilibrium. I’ve obviously made things as extreme as possible by
assuming such a small population size, and zero recombination. But
there seemed no doubt from simple thought experiments like this that
there is a very striking tendency for closely linked genes to become
associated if the population size is finite. The expectation that closely
linked genes will be in linkage equilibrium, coming from the 1918 infi-
nite population calculations, totally misses this point.
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A short section of a random population – no LD 

After 10 gens. of random mating – intermediate LD 

After 20 gens. of random mating – complete LD 



8 LINKAGE DISEQUILIBRIUM (LD)

1.3. Measuring LD in finite populations.
As a starting point in [30], I tried to calculate the expected amount of
LD for given values of c, the recombination rate, and N, the population
size. In this calculation, I was thinking in terms of loci held at a fixed
frequency by selection, but was able to cope with only the rather limited
case where there are two alleles at each locus, held at a frequency of
one-half at each. Since it is a symmetric model, positive and negative
values of d are equally likely, so that the expected value of d is zero.
The calculation was therefore of the expected value of d2, and I came
up with the value of

E[d2] =
1

16(1 + 4Nc)
(2)

Computer simulation was pretty slow and expensive in those days. I
did a couple of runs with N = 50 going for 2,000 generations and found
that the average calculated wasn’t too far off.

The formula with restriction to 50% frequencies obviously has very
limited application. After my paper came out, I saw the paper of Hill
& Robertson [16] which introduced the parameter r2, the square of
the correlation of gene frequencies. This is a normalised version of d2,
calculated as d2/pA(1− pA)pB(1− pB). This had come up in my paper
[30] but I hadn’t realised its significance..

The parameter r is an ordinary correlation coefficient defined in the
usual way. The parameter r2 is closely related to the χ2 for a 2x2
table, the relationship being r2 = χ2/2N . Partly for this reason it has
considerable advantages of application over d2 , and I started to try to
work in terms of r2 rather than d2.

I managed to come up with a reasonably simple expectation for the
equilibrium value of r2, essentially

E[r2] ≈ 1

1 + 4Nc
(3)

This was derived using a probability method (LIBD) that is simple in
application but hard to justify. Two long sections are included on this
topic, later in this chapter.

1.4. Measures of LD.
The range of values that the parameter d can take is -0.25 to 0.25.
However the range is dependent on allele frequencies, and the maximum
and minimum values can only be attained if the allele frequencies are
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0.5. If, for example, the allele frequencies are pA = 0.3, pB = 0.1, then
the possible range is restricted to -0.03 to 0.07.

For this reason Lewontin (1964) introduced the parameter d′, in which
the value of d is divided by its minimum and maximum values for the
particular observed allele frequencies, giving the parameter the range
-1 to 1. The parameter d′ has enjoyed a large amount of use, possibly
following the recommendation of Hedrick [12].

The parameter r has, in one respect, a similar effect in removing some
of the effects of allele frequency. For the case pA = 0.3, pB = 0.1, for
example, the possible range of values is -0.22 to 0.51. This removes
some of the range restrictions on d, but does not allow the full range
of values allowable for d′.

While at first sight it seems logical to use a statistic for LD that allows
the full range from -1 to +1, there are strong reasons for not doing this.
The fact that allele frequencies are unequal is not devoid of informa-
tion. It implies that there is not a complete correlation of frequencies
at the two loci. The parameter d′ throws out this information and
potentially gives the same value as the case of equal allele frequencies.
The parameter r, on the other hand, properly takes this information
into account.

There is nothing magic about the marginal allele frequencies, particu-
larly for a neutral model, that requires that an LD parameter be made
conditional on these allele frequencies. What happens, for example,
if we consider the correlation between two variables, such as levels of
education and income in a population. These are positively correlated,
I believe. Would one then want to ask what is the level of correla-
tion between all those individuals in the population with a particular
mean income and a particular level of education? It seems to make lit-
tle sense to calculate a correlation conditional on particular marginal
values.

As an aside I’d also like to comment on the illogicality of the notation,
in which r stands for the correlation and c stands for the recombination
frequency. If one was starting from scratch, surely one would do it the
other way around. Unfortunately r has been used for the correlation
coefficient for more then 100 years, so it’s not really possible to change
that. It’s easy occasionally to get confused between the two.

While on this semantic diversion, I’d also like to comment on the more
fundamental issue of the terms ’gene’ and ’allele’. I probably use them
uncritically, sometimes exchangeably. There seems to be a trend to
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avoid the use of the term ’gene’ altogether, given the difficulty of defin-
ing exactly what is and is not a gene, e.g. [26]. But I find it difficult to
take the next step to avoid the use in population genetics of the term
’gene frequency’. Everyone knows what this means. Perhaps ’allele fre-
quency’ is a suitable alternative. But then what about ’linked genes’?
I really dislike the use of ’linked alleles’. When I learned genetics, ’al-
leles’ were ’alternatives’, by implication at a single locus. Wikipedia
still seems to support this definition, which makes ’linked alleles’ a con-
tradiction in terminology. So what other than ’linked genes’ are we to
call these linked things, especially in a document that is devoted to
them?
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2. SOME RECENT PUBLICATIONS

I published nothing on LD for a period of more than 30 years following
my little flutter in the 1970s. In the years 2008 - 2013 there has,
however, been a flood of publications, four of them, that I’ll describe
here.

2.1. LD and the estimation of Ne.
The equilibrium value of r2 depends on the quantity Nec (3). This
means that if one knows the recombination frequency c, a method is
available for estimating effective population size from measurement of
LD at a single point in time [31]. This seems obvious now following
the publication of many papers on the topic and publication of the
computer program LDNe [44], but I recall that it seemed a eureka
moment at the time.

I never followed up on this, since there seemed little chance at the
time that data would ever be available to really apply the method.
Obviously I failed to foresee microsatellites and Hapmap. I also did
not give any thought to the difference between estimates derived from
closely linked loci and loosely linked loci, although I must have realised
that the former were relevant to times in the past and the latter to
recent times. Hayes et al [11] gave a clever argument to show that the
critical time is given approximately by 1/2c.

In fact I really only thought in any detail about very closely linked loci.
As detailed below, I actually had two tries at an equilibrium formula for
r2, the first being approximately (1−c)2/(1+4Nc) and the second just
1/(1 + 4Nc). I thought that there was very little difference between
the two, but Bill Hill once pointed out to me that for unlinked loci
there is a factor of 4 difference between the two. Furthermore, he and
Bruce Weir showed that the correct approximate formula for loosely
linked loci is [(1− c)2 + c2]/(1 + 4Nc), which for unlinked loci, c = 1/2,
lies midway between the two. I come back to this briefly in Section
4.4.

For loosely linked loci, up to unlinked loci, an extra factor comes into
play, in that the estimate of r2 contains a factor attributable to sample
size, approximately 1/2S where S is the sample size (see paragraph be-
low). This is potentially a much higher value than 1/Ne. Bill Hill [14]
first took this sampling factor into account. I was aware of this compli-
cation following work on LD with Newton Morton, but hadn’t tried to
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introduce this. In fact my first impression was that the size of the sam-
pling correction would make it impossible to get a useful Ne estimate
from unlinked loci. However following the work of Waples [44] it be-
came clear that if one had enough microsatellite markers with enough
heterozygosity then at least a rough estimate could be obtained.

There are, in fact, three reasons why unlinked loci are useful. First,
in large data sets, most pairs are of this type. Secondly, one knows
the c value for unlinked loci, whereas extensive family data are needed
to estimate c for linked loci. Finally they give an estimate for very
recent population size. So I realised that my prejudice against these
was unwarranted, and started to try to understand the theory behind
the correction for sample size. This depends on the work of Hill and
Weir e.g. [47], which has several important results that I’ll come back
to in Section 4.4.. It became clear from the work of Waples e.g. [43]
that there are subtle problems in these formulae, or at least in the way
they were applied, that led to biases in the Ne estimates.

My efforts at this theory, and those of Emilie Cameron and Stuart
Gilchrist’s, and the application to their microsatellite data, have now
been published [38]. I won’t go into any detail here, because it’s all
published and rather complicated. However I will mention one aspect
that remains up in the air. The expected value of r2, assuming no
expected LD, for the case where gametes can be recognised is, from the
work of Haldane and others many years ago, 1/(2S − 1) = 1/2S.[1 +
1/(2S − 1)], S being the sample size. In the usual case where gametes
can’t be recognised, it is necessary to use the ’composite LD coefficient’
[45]. Originally I thought the [1 + 1/(2S − 1)] bias factor would apply
here, but simulation showed that this was not the case. The factor in
this case seems to be [1 − 1/(2S − 1)2]. However my efforts to prove
this depend on the ’ratio of expectations’, rather than ’expectation of
the ratio’. The closeness of simulations to this value suggest that it
might be an exact result, analogous to Haldane’s, so if anyone feels like
trying this...

2.2. LD in subdivided populations.
There have been several papers calculating the expectation for LD
within and between populations, the best known being those of Ohta
[22]. Before considering the expectation, it is necessary to see what pa-
rameter is being estimated, and here I have to admit that I have never
been able to understand the rationale behind the range of parameters
that Ohta introduces to measure between population LD, D2

IT , D′2IS
and D2

IT . Tachida & Cockerham [41] introduced a different and more
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comprehensive set involving genes on the same gamete, genes on dif-
ferent gametes within an individual and genes on different individuals
within a deme, and between demes.

It seemed to me that there is a key parameter not considered in either
of these sets. The main point of interest when comparing LD values
in different populations is how similar they are. An obvious way of
measuring this is the covariance of LD values. In cases where popula-
tions have been separated for long periods of time, a zero covariance
is expected. If there is a lot of migration between populations then
similar LD values, or a high covariance, are expected.

The r parameter seems most useful here. The LD measure within
populations is the usual r2. The corresponding parameter to measure
LD between populations is rirj, for populations i and j. If populations
i and j are unconnected, the expectation for rirj is zero. For high rates
of migration, the expectation should be close to r2.

One value of the theory of Linked Identity by Descent (LIBD), elab-
orated in the following section, is that it can easily be expanded to
sub-divided or multiple populations. My paper [33] considers the usual
island model, where there are k populations each exchanging migrants
at the same overall rate m with other populations. Two parameters
are considered, LW , the LIBD probability for two haplotypes chosen
from one population, and LB, the LIBD probability for two haplotypes
chosen from different populations.

Recurrence equations for LW and LB can easily be written down. At
equilibrium, the expected value for LW is, approximately,:

L̂W =
1

1 + 4Nc[1 + (k − 1)ρ]

where ρ is a measure of the ratio of recombination to migration:

ρ =
m

m+ (k − 1)c

With a low ratio of migration compared to recombination, ρ goes to
zero, and

L̂W =
1

1 + 4Nc

With high migration, ρ becomes 1 in the limit, and

L̂W =
1

1 + 4Nkc
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According to the theory of LIBD, the value of r2 within population
equates to LW . So, as expected, with low migration the value of r2 is
determined by the local population size, while with high migration the
entire population determines the value of r2.

Referring to LB, the equilibrium value turns out to be

L̂B = ρL̂W

LB equates to the parameter for LD between populations, rirj. Again,
there is a simple equilibrium expectation, with low migration leading
to zero expected LD between populations, and high migration giving a
value of rirj which in the limit is indistinguishable from r2.

I did a lot of computer simulation, mostly with just two populations.
Agreement with expectation was by no means perfect, but the trends
were all in the right direction. It was necessary to do a large number of
simulations to achieve the required accuracy. It emphasised just how
variable the r values are, and how limited conclusions can be drawn
from observation of just a single pair of populations.

2.3. When did European and African populations split?
What’s that got to do with LD? Maybe the following will explain
it.

I haven’t written down the recurrence relationships for between-population
LD in the previous section. It can be written as:

E(rir
′
j) = (1 − c)2[βr2W + (1 − β)rirj]

where β = (2m−m2)/(k − 1).

So there is a contribution from the within-population LD, and a contri-
bution from the previous generation between-population LD. Popula-
tion size doesn’t come into it, although it does for the within-population
LD relationship. Furthermore for the particular case of zero migra-
tion,

E(rir
′
j) = (1 − c)2rirj

So the LD correlation goes down by a fraction (1 − c)2 in each gener-
ation. Actually this result is fairly obvious for the case of infinite-size
populations. And this is the basic idea needed to measure the number
of generations that two populations have been separated. It assumes
that one can measure the LD correlation, and at least estimate the
level of LD when the populations split.



LINKAGE DISEQUILIBRIUM (LD) 15

Peter Visscher and I somehow got together to work on applying this
theory to the Hapmap data, together with Allan McRae who did a
lot of the calculations. It resulted in a paper published in American
Journal of Human Genetics [40]. Although this is a high profile journal,
the paper has had almost zero citations, partly I suspect because the
editors made us publish it as a note rather than as a full paper, making
it almost unreadable. It’s a pity, because I think that there are a
number of aspects to the paper that deserve more attention.

Our overall conclusion was that the split occurred less than 1,000 gen-
erations ago, which in itself is quite controversial since mitochondrial
data seem to suggest 40-50,000 years. There are assumptions involved
in the calculations that I thought might be attacked by others - better
to be attacked than ignored. And we found one really weird bias for
the most closely linked loci, which led to a negative estimate of split
time. This turned out to be due to fixation, which we were able to
document. And there were plenty of other potential biases related to
estimating recombination frequencies, estimating past r2 estimates, etc.
The introgression of Neanderthal and Denisovan genes into European
populations hadn’t been published at that time, although my entirely
untested assumption is that the low frequencies reported wouldn’t be
enough to influence overall LD levels.

The calculations all assumed no migration. I was able to put migra-
tion into the picture in the manuscript referred to above [33]. The
main conclusion from this calculation was that migration between Eu-
rope and Africa could easily account for the discrepancies in estimated
split times. However to account for the shape of the curve connecting
recombination frequencies and estimated split times, it was necessary
to assume that this migration was ancient rather than recent.

2.4. LD between blocks of loci.
I first looked at the question of batches of loci in my 1968 paper [30].
If there are many linked loci, as is the situation in real life, there will
be so many pairs of loci that summarising the overall level of LD is
difficult. Looking at the simple simulation earlier in this chapter, even
with a relatively small number of loci it is not easy to summarise the
overall LD.

One quantity which seemed promising is the variance of heterozygos-
ity in a random mating population. Looking at the initial population
of the simulation at the beginning of this chapter, most individuals
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(pairs of chromosomes) will have a similar heterozygosity. In this situ-
ation, the variance between individuals of heterozygosity will be close
to zero.

Looking at the final population, each individual is either totally ho-
mozygous or totally heterozygous. The variance of heterozygosity VH
is therefore at a maximum, corresponding to the increase in LD. I
wondered whether there was a simple relationship between VH and
the sum of the values of d2. I did some computer calculations that
showed that there must be a simple relationship, and then some long-
winded algebra, the details of which I have long forgotten, that con-
firmed this.

I mentioned the result around the place (this was in my Stanford days)
and a day later Sam Karlin, who loved to show that other people’s
results were trivial, showed that my long-winded calculations could
indeed be replaced by a trivial calculation. What Sam noted was
that the variance of the sum of heterozygosites could be written in
the form:

VH = V (H1 +H2 + ....+Hk)

where H1, H2 etc are the individual heterozygosities. This could then
be replaced by

VH =
∑
i

V (Hi) +
∑
i

∑
j

Cov(Hi, Hj)

Substituting for the variance and covariance terms led easily to the
relationship:

VH = 8
∑

i,j d
2
ij+16

∑
i,j dij(0.5−pi)(0.5−qj)+2

∑
i piqi(1−2piqi)

Summation is over all pairs of loci for the first two terms and over all
loci for the third. The important term is the first term, to which all
pairs of loci contribute. The second term is usually less important,
because positive and negative D values tend to cancel out. Finally the
last term is independent of the amount of LD, essentially a correction
for the amount of heterozygosity.

The VH calculation was quite advantageous when I was doing multiple
locus simulations in 1966 and 1967. With the computers available at
the time, it was quite expensive to calculate all the d2 terms in each
generation, since with a few hundred loci, the number of d2 terms to
be calculated was many thousands.
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Even though calculation of many d2 values is now trivial with modern
computers, it is still sometimes advantageous to have a single multi-
locus measure. The use of VH as such a measure has been picked up
by others, particularly since the calculations have been implemented in
the computer program LIAN by Haubold and Hudson (2000) [10]. The
fact that I first suggested this measure has, somewhat to my chagrin,
been lost somewhere along the line.

Recently I realised that this method can be extended to looking at the
covariance of heterozygosity of different blocks of loci rather than the
variance of heterozygosity [37]. Again, the covariance of heterozygosity
relates to the sum of D2

i] terms, this time to all pairs of loci in the
different blocks. The statistic has the advantage that it can be applied
immediately to diploid data, and is not biased by sample size.

I looked at Hapmap data to see if there were any signs of covariance
between blocks on different chromosomes, perhaps as an indicator of
the phenomenon of ’affinity’ found many years ago in mice. These
results were negative. Looking at blocks within chromosomes, it was
possible to see LD at distances of up to 10cMs, a surprisingly large
distance.
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3. SELECTION AND LD

Three papers initially reported on the production of LD through finite
size: Hill and Robertson (1968) ”Linkage disequilibrium in finite pop-
ulations” [16], Ohta and Kimura (1969) ”Linkage disequilibrium due
to random genetic drift” [23], and my paper, Sved (1968) ”The stabil-
ity of linked systems of loci with a small population size” [30]. The
title of mine sounds rather different to the other two. The reason was
that I was rather hung up on the heterozygote advantage model at the
time (see Chapter 1 on genetic loads). So I pushed on to see what is
the expected effect of linkage disequilibrium on the heterozygote ad-
vantage model. Although there were results of interest (see below), I
think it was a mistake on my part to concentrate on this one model.
In retrospect, other selection models have turned out to be of more
interest.

3.1. Two-locus models.
Although realistic models of selection need to take into account selec-
tion at multiple loci, 2-locus models can give considerable information.
This is particularly the case for studying how selection on one locus
affects a linked neutral locus.

I haven’t seen an attempt previously to classify all possible 2-locus mod-
els. The three most commonly discussed single-locus selection mod-
els are considered here, positive selection, heterozygote advantage and
mutation-selection balance, in addition to neutrality. With two linked
loci there are 10 possible combinations, as shown below, where the first
column shows the effect of selection on a linked neutral locus. I’ve at-
tempted to attach names to the different combinations. As written,
the positive selection model arbitrarily assumes no dominance and the
mutation-selection balance model assumes dominance, although these
are not necessary features. I should also mention models of selective
interaction, sometimes described as ’equilibrium models’, [1] [7] [17],
athough these are not considered here.

Lines (3) and (4), the heterozygote advantage and mutation-selection
models, basically summarise the ’balanced’ and ’classical’ world views
respectively. Under the balanced view, selection maintains diversity.
Under the classical view, selection acts to purify the genome, oppos-
ing the deleterious effects of mutation. Each of these models postulates
the existence of hundreds or thousands of loci, many necessarily closely
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linked to each other. These opposing views were highlighted in Lewon-
tin’s influential book [19], although I don’t see as much current interest
in the argument.

The discussion here is mainly restricted to the interaction of finite-
size LD and selection, although much of the literature is not couched
in these terms. There is a large literature pre-dating the recognition
of finite-size LD, much to do with the evolutionary advantages and
disadvantages of recombination. Felsenstein’s review paper [5] gives a
succinct summary of this work.

3.2. Associative overdominance.
My paper [30] was based on the assumption of widespread heterozygote
advantage in the genome. Nowadays I would be so enthusiastic about
this model. But referring to the 20 chromosome simulation given in
Section 1.2, it is clear there are potentially large selective consequences
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(1)  B  allele changes by chance
together with A frequency

Original allele frequencies

(2)  A allele returns to its equilibrium
dragging B allele part of way back

B

B

B

δ

ε
B allele frequency

A

A

A

A allele frequency

Selected Neutral

Figure 1. Two stages in the interaction of LD and drift

of LD. In the final population of that simulation, every individual will
be either totally homozygous or totally heterozygous. Thus there is a
very strong reinforcing effect. Essentially the heterozygote advantages
at different loci cumulate, so that at each locus the advantage is many
times what it would have been with linkage equilibrium. This is an
extreme situation, but a two-locus model shows some of the proper-
ties.

3.3. Stabilising effect of a selected locus on a neutral locus.
Consider alleles A and B with some level of LD between them. The A
locus is assumed to be at a selective equilibrium because of heterozygote
advantage while the B locus is selectively neutral. Figure 1 shows the
expected consequences of selection and LD:

(1) Suppose that the frequency of the allele B at the neutral locus
changes by chance by some fraction δ. Because of the change in fre-
quency at the B locus, and the fact that there is non-zero LD between
the two loci, the frequency at the A locus must also change. If d is
positive then the frequencies of the two genes will change in the same
direction, as pictured in the diagram above, but the effect is exactly
equivalent if d is negative and the A and B alleles change frequencies
in opposite directions.

(2) Selection will drive the A locus back to its equilibrium. It seems
clear that will lead to a directed change at the B locus back towards
its original frequency. The magnitude of this change is ε. In the dia-
gram, the dotted arrows represent chance fluctuation, the solid arrow
represents direct selection, and the dashed arrow represents the effects
of LD and selection.

The theory derived in [30] says that the expected value of ε/δ is ap-
proximately d2/pA(1−pA)pB(1−pB). In other words selection tends to
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reduce the magnitude of fluctuations at the neutral B locus by this frac-
tion, although this simplifies by pretending that it all happens in one
generation. I didn’t realise at the time that this fraction is equal to r2,
the square of the correlation of frequencies between the two loci.

3.4. The apparent selective value.
A second way of looking at the situation is as follows. The values
below show the selective values at the A locus and at the B locus. The
values at the A locus are written this way to illustrate heterozygote
advantage, implying s > 0 and t > 0.

AA Aa aa BB Bb bb

1 - s 1 1 - t SBB SBb Sbb

The B locus is selectively neutral. However because of the association
with the A locus, this is not how it appears. Homozygous genotypes
at the B locus will tend to be associated with homozygous genotypes
at the A locus. Therefore they will appear to be at a disadvantage to
the heterozygote.

The values are as follows. The A locus frequency does not enter into
the formulae since the A locus is assumed to be at equilibrium:

SBb − SBB =
d2(s+ t)

p2Bpb
(4)

SBb − Sbb =
d2(s+ t)

pBp2b
(5)

Thus the heterozygote at the B locus will appear to have a selective
advantage over both homozygotes. Furthermore, (SBb − SBB)/(SBb −
Sbb) = pb/pB , which is exactly the condition required for equilibrium
at the B locus. Therefore it looks as though the alleles at the B locus
are at a selective equilibrium with the heterozygote at an advantage,
even though in reality the locus is neutral.

The same conclusions can be drawn from each of the above two results.
The B locus is at what may be termed a ’pseudo-equilibrium’. Selection
will tend to oppose any change from that frequency, and alleles at the
locus will look as if they are at equilibrium. Over a period of time,
however, frequencies may change to a new value. Selection will then
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oppose the change from this new frequency, and the locus will still
appear to be at selective equilibrium.

I didn’t think of giving a name to this phenomenon. Ohta and Kimura
[24] independently (but a little later) derived similar results. They
termed the phenomenon ’Associative Overdominance’, which was ac-
tually a term coined previously by Frydenberg (1963) [8]. I had seen
the term previously but had not thought it quite appropriate to this
case. Anyway it taught me a lesson that the first thing one should do
when finding a result is to find a name for it.

3.5. The combination of balancing and positive selection.
Two rather different scenarios can be envisaged for this situation. One
refers to Darwinian selection, when a new favourable mutation arises.
If a closely linked locus is held at equilibrium by balancing selection,
substitution of the favoured gene may be retarded.

The second scenario refers to artificial selection for a quantitative trait.
This is the situation that I considered in [36]. There are differences
between the scenarios. First, the Darwinian natural selection would
usually involve a single gene, whereas the artificial selection may involve
many genes. In addition, the fact that there is a single initial occurrence
of the favoured gene means that there must be some degree of initial
LD, which influences the process. Selection for a quantitative trait
influenced by many genes implies that some or all of these genes are
polymorphic in the population. If there is no initial LD, balancing
selection will have no effect (see below). So the process relies on finite-
size LD.

By arguments similar to those in Section 3.2 for associative overdomi-
nance, it seems that LD should lead to natural selection opposing the
effects of artificial selection. The only difference is that the change in
gene frequency in Figure 1 is due to chance in the unselected case and
due to positive selection in the current case.

There is additional factor in the case of positive selection. Selective
values at each locus of the model are as follows. It is convenient to
start by assuming that the selection at the A (balanced selection) is
symmetrical against the two homozygotes. Selective values of AB geno-
types are obtained by multiplying the A and B selective values. Note
that the loci have been reversed compared to [36] for consistency with
Figure 1.
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Figure 2. Balancing selection opposes positive selection

A1A1 A1A2 A2A2 B1B1 B1B2 B2B2

1 - s 1 1 - s 1 1 + t/2 1 + t

The opposition of selection can be studied by looking at the covariance
of selective values. Doing the equivalent calculation to that given in
[36], this comes to

std(p1 − p2)

where d is the coefficient of linkage disequilibrium and p1 and p2 are
the A locus allele frequencies.

Looking at Figure 2, it can be seen that d and p1 - p2 will generally
be of opposite sign. If d is positive, then an increase in the frequency
of B2 will lead to an increase in the frequency of A2, making p1 - p2
negative. Similarly if d is negative, the frequency of A1 will tend to
increase. Overall, therefore, there is a negative covariance. A more
precise algebraic argument can be given for to show that the quantity
d(p1−p2) is decreased by selection, and the argument can be extended
to asymmetric selection at the B locus.

The opposition of natural selection to artificial selection therefore de-
pends on the existence of LD. If d = 0, no effect is expected. Only if
sufficient LD is generated by chance will there be an effect. So it is
not clear how significant this effect will be. Computer simulation of
multiple locus models was used to approach the problem.

3.5.1. Computer simulation.
Simulations were done with a chromosome of 50 map units, with 12
quantitative loci interspersed with 96 loci with heterozygote advantage,
either randomly or equally distributed along the chromosome. All runs
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were started with heterotic loci at 50% frequency, expected to give
the maximum retarding effect, and a range of initial frequencies at the
quantitative loci. Maximum and minimum levels of initial LD were
simulated. A population size was 50 (2N = 100).

Figure 3. Computer simulation of how natural selec-
tion might oppose artificial selection

Results in all cases showed low levels of retardation due to the heterotic
loci. Despite the larger numbers of stabilising loci held at intermedi-
ate frequencies, the quantitative loci seemed able to thread their way
through. Figure 3 shows some results, averaged over 25 replicate runs.
The simulations were based on 25 generations of selection, 15 gener-
ations without artificial selection to see if there was regression of the
quantitative character, followed by 20 generations of selection. Two
levels of natural selection were used, but even if there was a four-
fold greater level of selective intensity devoted to balancing selection
compared to positive selection, the losses in selective gain were mod-
est.

All runs showed some regression to the initial value after artificial se-
lection was relaxed, including the case of no natural selection. I believe
that this apparently counter-intuitive result can be attributed to the
fact that truncation selection induces an additive x additive interaction,
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whose gain is lost when recombination re-assorts the genes during the
period of no selection, a result predicted by Griffing (1960) [9].

I presented the above results at a quantitative genetics conference in
1977. The paper was published in the proceedings, although in ret-
rospect I should have tried to publish it in a refereed journal. At
the same conference, Alan Robertson tackled more or less the same
problem. Fortunately our conclusions were similar regarding the low
interference due to natural selection.

Alan carried out simulations in a novel way. Rather than by just sim-
ulating lots of linked loci on a chromosome, he kept track of specific
segments, subdividing them each time a new crossover occurred. Al-
though segments are sometimes lost, the number of segments keeps
climbing to a rather high number over time. However the computing
power available at the time coped with this number, and I have had a
bit of success more recently simulating selection in this way thanks to
Mr Moore’s Law.

3.6. Hitchhiking.
During Darwinian substitution of a gene, the regions surrounding the
favoured gene show reduced heterozygosity, the opposite of what is
expected with heterozygote advantage. The theory behind this is due
originally to Maynard Smith and Haigh (1974). Although the theory
was put forward without specific reliance on LD, as pointed out above
there is a necessary generation of LD when a single favourable mutation
arises.

Hitch-hiking has turned out to be of much more interest than asso-
ciative overdominance, as it has become the main way of detecting
Darwinian selection in evolution, particularly in human evolution. As
previously stated, I wish I hadn’t been so hung up on the heterozygote
advantage model. The current theory is somewhat more sophisticated
than the original hitch-hiking theory, depending on multiple locus hap-
lotypes rather than two locus haplotypes [28].

3.7. The Hill-Robertson effect.
As I understand it, the Hill-Robertson effect refers to the tendency of
selection to lead to sub-optimal genotypes owing to interference caused
by LD. The name, originally popularised by Felsenstein in his review
[5], is sometimes used more broadly to describe all finite-size LD effects.
The theory was developed by Hill and Robertson (1966) [15], perhaps
before they had clarified their ideas on what effects were due to selection
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and what to finite size [16]. The Felsenstein paper includes the following
acknowledgment ”I wish to thank Drs. A. Robertson and W. G. Hill for
having the patience to re-explain their work to me as often as I asked
them”, which I think emphasises the compexity of the problem, and of
teasing out what aspects are due to drift and what to selection.

3.8. Background selection.
This refers to the effect that deleterious genes maintained in the popu-
lation by mutation have on linked neutral polymorphisms. The theory
was put forward by Charlesworth and colleagues [2], again without spe-
cific mention of LD. From my point of view, it seemed scarcely surpris-
ing that there could not be strict neutrality under these circumstances.
What was perhaps surprising to me at the time was the direction of the
effect, that polymorphism would actively be reduced compared to the
neutral case. In retrospect, it seems clear that the rise in frequency of
any new favourable mutation will be opposed, given that it is likely to
be in LD with some deleterious gene(s). A similar argument might also
be made for the chance rise in frequency of any new mutation.

To see, however, why the direction of response seemed surprising at the
time, I need to refer back to a paper of Ohta (1971) [21] and a paper
of mine [32]. Ohta’s paper showed that, under some circumstances at
least, there could be associative overdominance due to linked detrimen-
tal genes, i.e. a stabilising effect.

My original paper in 1968 [30] was concerned not with detrimental
genes but with heterozygote advantage. However when Ohta’s paper
came out, it reminded me of an early calculation on deleterious genes
I had made. The model is as follows:

AA Aa aa BB Bb bb

1 1 - hs 1 - s SBB SBb Sbb

This leads to ’apparent selective values’ as follows:

SBb − SBB =
sd

p2Bpb
[−x1h− x3(1 − h)]

SBb − Sbb =
sd

pBp2b
[x2h+ x4(1 − h)]
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where d is the usual linkage disequilibrium coefficient and x1, x2, x3
and x4 are the frequencies of the haplotypes AB,Ab, aB and ab respec-
tively.

For values of h in between 0 and 1, one of these will be positive and
one negative depending on the sign of d. Thus there will be directional
selection at the B locus depending on which allele is associated with
the favoured A allele.

However when one adds up the two equations:

2SBb − SBB − Sbb =
d2s

p2Bp
2
b

(1 − 2h).

So if there is any degree of dominance, ie h < 0.5, the heterozygote will
have an advantage on average. This won’t matter if there is only one
selected locus. However if a neutral locus is linked to many such loci,
with some positive and some negative d values, the heterozygote will
be at a selective advantage, tending to stabilise the frequency.

As mentioned, I found this result quite early during LD-selection cal-
culations but forgot about it in favour of the much more readily inter-
pretable equations (4) and (5). Following Ohta’s 1971 paper I somehow
felt obliged to come back to this result. It’s not something I’m par-
ticularly proud of, given that Ohta had already published something
similar. What’s worse is that I then did a whole lot of computing to
show that there was a stabilising effect, by setting up a model of many
linked deleterious recessive genes all at 50% frequency. I seem not to
have been worried about the question of how all these deleterious genes
were supposed to get to 50% frequency.

Fortunately this paper [32] was generally ignored. However it and
Ohta’s paper were picked up by Palsson and Pamilo (1999) [25] who
pointed out the contradiction between the stabilising effect of this
model, and the effect of background selection in increasing the fixation
rate of neutral genes. These authors claim that the value of Nhs is crit-
ical in determining whether selection will be stabilising (low Nhs) or
destabilising (high Nhs). More recently Zhao and Charlesworth [49]
studied the same problem in more detail, although their conclusions
don’t seem to contradict those of Palsson and Pamilo. Whether the
effect goes one way or the other seems complicated.
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4. LINKAGE DISEQUILIBRIUM (LD) AND LINKED
IDENTITY BY DESCENT (LIBD)

4.1. Introduction.
Why should LD arise in a finite population? The first, conventional,
way of looking at this is via frequency arguments, that there will be
a correlation of gene frequencies, or LD. But it is also clear, e.g. via
the simple simulation in Section 1, that LD is due to the inheritance of
multiple copies of particular haplotypes from a common ancestor. So
one might also ask - ”what is the probability of identity by descent of
such linked alleles?” I have come to call this the probability of linked
identity-by-descent (LIBD). It refers specifically to identity by descent
of two loci via the same pathway from a common haplotype in previous
generations, i.e. descent in the absence of crossingover between the two
loci on either pathway.

The main purpose of this section is to try to justify the assertion that
the LIBD probability directly estimates the LD measure r2. However
I should make a slight diversion here to compare what I mean by the
LIBD probability with parameters considered by other authors, specif-
ically Sabeti et al (2002) [27], Hayes et al (2003) [11] and Weir and
Cockerham (1974) [46].

Sabeti et al (2002) and Hayes et al (2003) introduced measures la-
belled respectively extended haplotype homozygosity (EHH) and chro-
mosome segment homozygosity (CSH). From what I understand these
are the same thing, directly measuring identity over a chromosome
region by observation of identical SNPs. However Hayes et al make
allowance for extra chance homozygosity beyond identity-by-descent
through the same pathways. CSH and EHH are observable measures,
but their probability is essentially the same as the LIBD probability.
The measures are intended as direct estimates of LD, without relating
specifically to frequency parameters such as r2. In fact Hayes et al [11]
show that CSH is a better measure of LD than r2 because of its lower
variance.

By contrast, Weir and Cockerham (1974), consider all possibilities of
IBD at two loci. Their parameter for joint IBD at the two loci combines
the case of LIBD with that of IBD at two loci via separate pathways.
While this may lead to a more comprehensive treatment, it obscures
the simplicity of the LIBD approach.
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Anyway it seemed to me that LIBD and LD provide alternative descrip-
tions of the same phenomenon [31] [34]. Furthermore, the LIBD argu-
ment leads to great simplification in deriving r2 expectations. However
the question of whether the probability (LIBD) and frequency (LD)
approaches are totally equivalent is one that still needs justification.
Nobody else seems to have taken up the approach, which can probably
be taken to mean that there is a problem with it. Anyway I’ll now
attempt to summarise the whole of this sorry saga, and then attempt
some further clarification.

4.2. An aside on the effect of fixation.
All measures of LD have the property of either being zero or undefined
if allele frequencies at either of the two loci are zero. I will be dealing
mainly with r2 as a measure of LD, which becomes zero divided by
zero or undefined if one of the two loci is ’fixed’. When considering
LIBD, by contrast to LD, questions of fixation do not arise. The LIBD
probability is independent of allele frequencies, being dependent simply
on population structure and recombination rates. It seems therefore,
in trying to equate LIBD and LD, that fixation, or its probability, will
create problems. This issue will arise at several places below.

In practice, there may seem no reason to want to calculate r2 in such
a case. However in calculating the expected value of r2, it would seem
desirable to give recurrence relationships for the value in one generation
in terms of the value in the previous generation. If, however, there is
a certain probability that one of the loci becomes fixed in going from
one generation to the next, it’s not clear that any exact recurrence
relationship can be given.

Much of the calculation on expected r2 values avoids this problem by
calculating not

E[ d2

pA(1−pA)pB(1−pB)
]

but rather

E[d2]
E[pA(1−pA)pB(1−pB)]

These are, of course, not the same thing. Hill (1977) [13] has shown
how to approximate the difference between the two in terms of higher
moments. In practice, computer simulation has shown that the two
are reasonably similar, and the latter expression has usually been used,
thereby avoiding the fixation problem.
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4.3. Argument #1, the basic justification for the LIBD method.

I was involved in two papers putting forward the LIBD argument,
(Sved, 1971 [31] and Sved & Feldman, 1973 [34]). It is convenient
to deal with the later paper here, since it is a much simpler argument
and, I think, the basic reason why the method works. The first paper
has problems which I will go into in detail in section 5.

The argument of [34] depends on the analogy with single locus calcu-
lations. The focus in single locus calculations is on inbreeding, specif-
ically on the way in which the coefficient of inbreeding can be defined
in terms of either frequencies or probabilities.

The definition of an inbreeding coefficient in terms of the correlation
between uniting gametes is usually attributed to Sewall Wright (eg.
[48] ), following earlier work by Pearl and Jennings. Wright’s original
definition, in terms of path coefficients, seems a hybrid of probability
and frequency coefficients. However the inbreeding coefficient can be
defined purely in terms of a conventional correlation coefficient ( Crow
& Kimura [3], p67).

Somewhat later, the identity-by-descent definition of inbreeding was
introduced by Malecot and others. By contrast to the correlation defi-
nition of the inbreeding coefficient, the IBD definition involves proba-
bilities, not allele and genotype frequencies.

The relationship between the correlation and probability definitions
may be seen in the following simple way, closely related to the argument
from Crow & Kimura [3], p66. If two genes are identical by descent,
with probability fA, then their correlation is 1. If they are not identical
by descent, then their correlation is 0. Overall, therefore,

rA = fA.1 + (1 − fA).0 = fA

This argument will only work if correlations are additive. The verity
of the argument can be checked here by writing out the full set of
genotypes cf. Crow and Kimura, 1970, Table 3.2.1. This is given
below, where pA is the frequency of the A allele:

A a
A (1 − fA)p2A + fApA (1 − fA)pA(1 − pA) pA
a (1 − fA)pA(1 − pA) (1 − fA)(1 − pA)2 + fA(1 − pA) 1 − pA

pA 1 − pA
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Then the correlation may be calculated most simply by assigning allele
A the value ’1’ and a the value ’0’, giving

rA = [(1 − fA)p2A + fApA − p2A]/
√

(pA − p2A)(pA − p2A) = fA

A B

A BA B

1

2

The argument so far has looked only at genes at a single locus (see (1)
in the diagram). The equivalent two-locus argument can be seen by
following the pathways labelled (2) in the diagram. The probability
that the A and B alleles are transmitted intact without recombination
on the pathway from the common A locus ancestor can be defined as
fAB. In such an event, the correlation is equal to 1. On the other hand
any recombination event will connect the A allele to a random B allele
in the population, assuming random mating. The correlation between
the A and B genes in such a case will thus be 0. The overall correlation
is equal to

rAB = fAB.1 + (1 − fAB).0 = fAB (6)

It has been pointed out to me by people who are much more rigorous
in their approach that one can’t assume that correlations are additive,
as I have blithely assumed here. But I’m fairly sure that the argu-
ment works OK here, provided that the variances, the denominator
in the correlation calculation, are the same for each of the A and B
loci, and are also unaffected by crossingover. These variances must be
determined just by population structure, which affects both loci in the
same way. I’ve done some simulating just to confirm that assigning a
random value in the range( 0, 1), the same value for A and B with
probability f , and different random values with probability 1− f , does
give a correlation coefficient equal to f .
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Unfortunately I can’t see a direct comparison with the single locus table
above. For a single locus, one can easily write down the frequency of
AA genotypes as fA.pA + (1− fA).p2A. It is not obvious, to me at least,
how one writes the frequency of AB gametes in terms of fAB and the
haplotype frequencies.

The LIBD probability L defined previously is equal to f 2
AB. This as-

sumes that events in the two pathways leading to the present gametes
are independent. So the result can be expressed in terms of the prob-
ability of LIBD, L, as

E[r2AB] = f 2
AB = L. (7)

4.3.1. Calculating the LIBD probability L. This probability requires
a recurrence relationship between generations, specifically between a
parent generation and an offspring generation. Assuming the simplest
Wright-Fisher haploid model, offspring are produced by choosing from
an infinite pool of gametes produced by the parent generation, equiv-
alent to choosing two gametes with replacement from the parent ga-
metes. LIBD in the offspring generation requires that there be no
recombination in either gamete coming from the parent generation,
since any recombination event will randomise the connection between
the two loci. So the LIBD probability in the offspring generation is
obtained by choosing two parent generation haplotypes, multiplied by
the probability of no recombination in either, (1 − c)2. In a parent
population of 2N haplotypes, the chance that the same haplotype is
chosen twice is 1/2N . The chance that two different haplotypes are
chosen is 1 − 1/2N , in which case the probability that two such ga-
metes are identical is, by definition, L, the LIBD probability of the
parent generation. Overall, therefore,

L′ =
(1 − c)2

2N
+ (1 − 1

2N
)(1 − c)2L (8)

L, the probability of LIBD, refers to gametes, or haplotypes, chosen
from a particular population. This formula was given in [31]. Un-
fortunately when Marc Feldman and I [34] made this argument, we
introduced a novelty that seemed appropriate at the time, and insisted
that this process needed to be sampling with replacement not from the
parent generation but from the offspring generation.

The reason why we (actually it was my fault rather than Marc’s) did
this, relates to the attempt to equate the LIBD parameter to the quan-
tity r2 which is calculated from quantities such as d2 by multiplying
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frequencies as if the sample size was infinite. While it may seem ar-
tificial to sample the same gamete twice and refer to this as LIBD,
such sampling seemed necessary to equate probabilities with statistics
calculated from gene frequencies. It is sometimes possible to calculate
statistics that do not make this assumption; for example the true ex-
pected frequency of homozygosity for an allele having n copies in a
population of 2N alleles would be n/2N.(n− 1)/(2N − 1), rather than
(n/2N)2. Sampling without replacement would be the valid procedure
if homozygosity was calculated in this way. However this is not the
way that statistics such as r2 are calculated. Single locus calculation
with Barrie Latter [35] emphasised how sampling with replacement
from the population is necessary to equate probability and frequency
statistics.

What we [34] failed to take into account was clarified by Weir and
Hill (1980) [47], although perhaps there are earlier similar arguments.
They pointed out that there are two distinct processes - (1) producing
an offspring population from the parent population, usually according
to the Wright Fisher model, and then, if necessary, (2) taking a sample
from the offspring. In constructing a between-generation recurrence
relationship it does not make sense to take the second sampling process
into account. The recurrence relationship derived in [34]

L′ =
1

2N
+ (1 − 1

2N
)(1 − c)2L (9)

seems to give the correct answer if the whole population is sampled.
However it is simpler, as well as being much easier to justify, if one
ignores the second sampling process and concentrates just on the recur-
rence relationship between the parent and offspring populations.

Equation (8) easily generalises to any number of generations. It gives
an equilibrium value for L of

(1 − c)2

1 + (2N − 1)(2c− c2)
(10)

so that for small values of c we have

E[L̂] ≈ 1

1 + 4Nc

This agrees with (2) derived earlier under conditions where allele fre-
quencies are held at a selective equilibrium of one-half.
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The rate of approach is given by

(1 − 1

2N
)(1 − c)2.

So now, using E[r2] = L, the expected value of r2 in the offspring
generation in terms of the parent generation is:

E[r2
′
] =

(1 − c)2

2N
+ (1 − 1

2N
)(1 − c)2 r2 (11)

and

E[r̂2] ≈ 1

1 + 4Nc
(12)

The expected value of r2 from sampling can then be calculated approx-
imately from ρ2 + (1 − ρ2)/(S − 1), where ρ is the correlation in the
parent population and S is the number of gametes sampled [42].

4.4. LIBD with loose linkage.
One aspect of the LIBD argument has worried me for a long time; it
gives the wrong answer for loose linkage. This has been most obvious in
the case of unlinked genes, which has been discussed in connection with
estimating population size (Section 2.1). As shown above, equation
(10), the equilibrium value of the LIBD probability L contains the
term (1 − c)2 in the numerator. Weir and Hill (1980) [47] give an
equilibrium expectation for r2, with (1 − c)2 + c2 in the numerator.
Actually the expectation is for the ratio of expectations rather than
the expected value of the ratio (Section 4.2), but computing shows
that the formula works well for most values of r2. In particular, it
gives a value for unlinked loci that is double the value given by (10).
In our paper analysing microsatellites [38], we just accepted the Weir
and Hill expectation, leaving unanswered the question of why the LIBD
calculation appears to fail.

In early 2016 I received a letter from Igor Chybicki from Kazimierz
Wielki University in Poland, suggesting a possible solution to this
dilemma. He pointed out that my derivation of equation (8) misses
an important possibility, chiefly because the derivation assumed a hap-
loid rather than a diploid model. I had not appreciated this deficiency
of the haploid model.

The extra term contributed by the diploid model comes from the fact
that if two gametes are produced, each with crossingover, identity by
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Figure 4. The effect of compensating crossovers

descent of the two gametes is assured at both loci. This event is de-
scribed as ’compensating crossovers’ in Figure 4 (to be distinguished
from double crossingover). The probability of this event is c2. The
model differs from the haploid model where two gametes produced by
recombination and IBD at the A locus would not be IBD at the B
locus. The event with compensating crossovers cannot strictly be de-
scribed as LIBD. However its consequences are the same, an increased
correlation between alleles at the two loci equivalent to what would be
expected with no crossingover.

Calculation of the relationship between generations, Figure 5, is a little
more complex than for the haploid model. It focuses on individuals
rather than haplotypes, with three possibilities rather than two:

[1] Two different offspring haplotypes come from the same parent in-
dividual. Two cases need to be considered here:

[1a] The same gene is selected at the first of the two loci. This is the
situation described above, where compensating crossovers need to be
taken into account as well as no crossovers, as shown in the first box
of Figure 5.

[1b] If different genes are selected at at the first of the two loci, LIBD
in the offspring is only possible in the case of LIBD in the parent. With
LIBD of the two gametes in the parent, crossingover will have no effect
on LIBD in the offspring.

[2] If the offspring haplotypes come from two different parents, with
probability 1 − 1/N , LIBD in the offspring is only possible if there is
LIBD of the two chosen haplotypes, multiplied by the probability of
no crossingover. Note that ’compensating crossovers’ do not lead to
LIBD where different parents are involved, except in the random, and
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Figure 5. Calculation of the LIBD recurrence relation-
ship for a diploid model

unlikely, event of LIBD of the second haplotypes possessed by the two
parents.

The overall offspring LIBD probability is the sum of the three proba-
bility boxes of Figure 5. The steady state solution can again be found
by putting L′ = L, giving, in essential agreement with [47]

L̂ =
(1 − c)2 + c2

1 + (2N − 2)(2c− c2)
(13)

The calculation of Figure 5 assumes a diploid model with no sexes.
Separate sexes can also be taken into account, although the calculation
is more complex. The result in this case is the same as with no sexes,
except that N in equation (13) is replaced by the effective population
size Ne, defined by

4

Ne

=
1

Nf

+
1

Nm
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Weir and Hill [47] also reported the surprising finding that monogamy,
where parents mate for life rather than random choice of partners for
each offspring as assumed in the calculation above, has an effect on the
expected r2 value. Igor and I were able to take this case into account,
where an extra factor of compensating crossovers in sibling parents
increases the LIBD probability. The numerator of equation (13) in this
case becomes (1 − c)2 + 3

2
r2, as found in [47].

Weir and Hill [47] further calculated the expected ’composite’ r2, pre-
viously mentioned in Section 2.1. In this case, monogamy has a larger
effect on equilibrium r2. The numerator of the equilibrium r2 becomes
(1−c)2+c+c2, which is double the non-monogamous value for unlinked
loci (c = 0.5). We were again able to derive this result for the LIBD
probability.

We submitted our calculations for publication, but were unable to get
past the reviewers, for reasons that I found difficult to understand
(naturally). Anyway it is available HERE in case you are interested.
Perhaps it is not surprising that a paper that mostly just re-derives
forty year old results is only of interest to somebody (me) trying to
vindicate the probability method. But should there still be any interest
in calculating LD or its expectation, the LIBD method still seems of
value. Largely this has already been demonstrated by the calculations
of LD within and between populations (Section 2.2), where pages of
algebra can be replaced by a formulation that identifies and calculates
very simple LD measures.

5. MORE ON LIBD

The first part of this section is an attempt to explain the thinking be-
hind my paper [31] that introduced a predecessor to the LIBD argument
given in the previous section. I’m embarrassed about the derivation in
this paper, which I now see has major errors. Then follows a third
attempt at justifying the LIBD argument in terms of ’LIBD classes’.
This section could have been omitted, and can safely be skipped. It is
included for two reasons. First, [31] is the only LD paper I have written
that is cited nowadays, presumably because it has got into the litera-
ture as being the first mention of the equation E[r2] = 1/(1 + 4Nc),
and nobody actually reads it. Nevertheless I feel some obligation to
try to explain it. Secondly, although many of the arguments are highly
circuitous, I do feel that they raise some points of interest.

http::/www.handsongenetics.com/PIFFLE/igor5.pdf
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5.1. Argument #2 - LIBD and homozygosity.
Argument #1 of the previous section focuses on LIBD and r2 while ig-
noring homozygosity. Clearly LIBD will lead to an increased frequency
of double homozygotes over what is expected in a population in which
there is no LD.

My original attempt [31] to derive a relationship between LIBD and r2

used homozygosity as the basis for the argument. Joint homozygosity,
it was argued, could be defined in terms of frequency parameters or in
terms of probability parameters. Equating the two approaches led to
(7).

The obvious expectation for the frequency of joint homozygosity at
two loci would appear to be based on the following argument. LIBD
necessarily leads to joint homozygosity. The non-LIBD class, in which
recombination occurs in one or other pathway, might be expected to
contain double homozygotes at just the frequency in the overall popu-
lation, the product of the homozygous frequency at the individual loci.
Unfortunately this argument doesn’t seem to work, and leads to no
simple equation of probability and LD parameters.

The only way I was able to derive such a relationship was by considering
not simply the probability of LIBD at two loci, but rather what was
described as a ’conditional probability’. I need to elaborate on this
here. What is being considered is a situation in which there is an A
locus with A and a alleles segregating, and a linked B locus with B and
b alleles. The way I looked at it was that at the A locus all A alleles
are IBD from some previous ancestral gene, and similarly all a alleles
are IBD. On the other hand A alleles are not IBD with a alleles. My
analysis required disregarding alleles known not to be IBD, in other
words conditioning on only alleles identical in state at one locus. It
is a messy situation, trying to force a model with two alleles at each
locus into a probability framework.

Coalescence theory would require a specific mutation parameter that is
missing from this analysis. The analysis presented later in this section
is more or less in such terms, assuming that mutation is much rarer
than recombination. Therefore haplotypes with the A allele coalesce
to a different ancestral haplotype compared to those haplotypes with
the a allele.

The argument in 1971 [31] was the following. Suppose that one chooses
one haplotype, and then chooses another haplotype containing the same
allele at the A locus. How does this affect homozygosity at the B locus?
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Figure 6. Calculation of the LIBD recurrence relation-
ship for a diploid model

Note that the second haplotype could be the same haplotype selected
twice.

Assuming that there is some LD, it seems clear that there will be
increased ’homozygosity’ at the B locus. In the diagram here we’ve
randomly chosen haplotypes containing an a allele. The existence of
LD makes it more likely that the B locus will be B/B if d is negative
and b/b if d is positive.

The calculations now look at the amount of homozygosity at the B
locus. It is convenient to introduce the symbol h to describe this fre-
quency, remembering that this refers specifically to homozygosity at
the B locus. SImilarly the symbol hc is introduced to describe the ho-
mozygosity at the B locus conditional on choosing the same allele at
the A locus. The conditional probability of homozygosity is:

hc =
p2AB + p2Ab

pA
+
p2aB + p2ab

pa

Substituting for the haplotype frequencies using pAB = pApB + d, and
similarly for the other three haplotypes, this simplifies to

hc = p2B + p2b +
2d2

pApa
= h+

2d2

pApa
(14)

So far, this has been a frequency argument. We now need to bring in a
probability parameter to measure LIBD. In the 1971 paper I used the
parameter Q. As mentioned above, this was defined conditioned on
choosing alleles IBD at the A locus. This was all introduced in a very
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messy way, and was not understood by anyone, evidently including
myself. Anyway I’ll first repeat the basic argument here. I’ll make
one change by calling the LIBD parameter L rather than Q. And
later I’ll introduce an extra parameter that specifically measures LIBD
conditional on choosing the same allele at the A locus.

What is the probability of homozygosity at the B locus, hc, in terms
of the parameter L? If there is no crossingover on either pathway then
the probability of homozygosity is 1. On the other hand, one or more
crossovers will ensure that the alleles at the B locus are combined at
random, giving the probability of homozygosity as h = p2B + p2b . The
random mating assumption is the same as one made in the calculation
of the previous section, and will be considered further here. Under
these circumstances, the overall probability of homozygosity is

hc = L.1 + (1 − L).h

which simplifies to

hc = h+ 2LpBpb (15)

Comparing the two approaches for predicting hc, ie comparing (14) and
(15):

2d2

pApa
= 2LpBpb

so that

d2

pApapBpb
= r2 = L

This relationship of frequency with probability parameters is only an
expectation over populations with the same probability history, so that
we should write

E[r2] = L. (16)

5.1.1. Where the argument goes wrong.

Equation (9) derived in section 4.3.1:

L′ =
1

2N
+ (1 − 1

2N
)(1 − c)2L

purports to show the relationship between generations for two haplo-
types selected, with replacement, from the population. Here L′ is the
LIBD probability from the offspring generation and L the probability
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for the parent generation. The argument in [31] assumes that this rela-
tionship will work for the particular sampling in which two haplotypes
are selected with the same allele at the A locus.

In hindsight it is clear that one can’t write the probabilities as I as-
sumed. If all alleles are equivalent, the probability of choosing the
same allele twice from the population is 1/2N . But that seems wrong
in the case where one is specifically directing attention to A alleles
which constitute only a portion of the population.

Figure 7 shows haplotype numbers in two generations. In the Offspring
generation, marked with the rectangle, there are n′A A alleles and n′a
a alleles (n′A + n′a = 2N). We then ask: ′′what’s the probability that
randomly chosen pairs of haplotypes with the same A allele from the
offspring generation are LIBD?′′. I’ll call this probability L′c, the c
subscript indicating that this is a conditional LIBD parameter.

Figure 7. Parent and offspring generations

The probability of selecting the first allele as A is n′A/2N . In this case
the probability that the exact same haplotype is selected twice is 1/n′A.
If the same haplotype is selected, then LIBD is assured. If a different
A allele is selected, with probability 1 − 1/n′A , the haplotypes could
still be identical from the previous generation, provided there has been
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no recombination between the generations. The probability of these
events is (1 − c)2Lc, where Lc is the equivalent conditional probability
in the parent generation.

Overall, the contribution to LIBD from selecting an A gene is

n′A
2N

[
1

n′A
+ (1 − 1

n′A
)(1 − c)2Lc]

which is equal to

1

2N
+ (

n′A
2N

− 1

2N
)(1 − c)2Lc

To this must be added the equivalent contribution from the other pos-
sibility, that the a allele is selected at the A locus. This contribution
is equal to

1

2N
+ (

n′a
2N

− 1

2N
)(1 − c)2Lc

The sum of these two terms is the conditional probability of LIBD in
the offspring generation L′c. This simplifies to

L′c =
1

N
+ (1 − 1

N
)(1 − c)2Lc (17)

Comparing equations (17) and (8) shows that the probability from
new LIBD, 1/N , is twice the regular IBD probability. In other works,
the coalescence distance is only half the value of that for alleles not
chosen as being of the same class. I have simulated this using a forward
simulation and checking back over generations, and it does work. By
the same argument, for three alleles the distance would be one third of
the regular value.

5.1.2. Can the argument be resurrected?
I’ve been through some tortuous calculations that I won’t include to
show that, maybe, it can. But I doubt there is much point in trying to
resurrect this particular argument. As stated previously, the attempt to
coerce a two allele model into a coalescence framework is a frustrating
one.

I still believe, however, that homozygosity of linked genes studied using
LD parameters (r) ought to be equivalent to homozygosity using prob-
ability (LIBD) parameters. But it will need somebody else to show
this.
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5.2. The length of identical segments.
While LIBD can be thought of in terms of two loci, it can also be
described in terms of the length of identical chromosome segments.
Ultimately what determines haplotypes in a population is the position
of crossovers along a chromosome.

I calculated a simple statistic along these lines in [31]. Given that one
has a locus at which the two alleles are IBD, what is the distribution
of identical segment around such a locus? In a population of size N,
the mean length of segments at equilibrium turns out to be not very
dependent on chromosome length, and is approximately

1

2N
(logN − 1) (18)

The mean and standard deviations of segment lengths in cMs for three
population sizes are as follows:

Population size 100 1,000 10,000
Mean (cMs) 1.8 0.3 0.04
Standard deviation 6.8 2.2 0.7

In all cases, particularly the highest population size, the standard devi-
ations are high compared to the mean. It seems that it is the occasional
long homozygous segment that contributes the most to the mean.

Figure 8. Total IBD with crossovers
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Many authors have written on similar topics (see the references to
EHH and CSH in Section 4.1). An important contribution came from
Stam (1980) [29] who raised objections to (18), because my formula-
tion ignores cases of IBD of a segment in which there has been some
crossingover in past generations. Figure 8 shows an extreme example
of this kind, where the entire chromosome surrounding an IBD locus is
IBD despite multiple crossovers. I’m not sure whether such ’secondary’
events with crossingover should be included in such a statistic or not.
I was thinking of this statistic as giving a value for the likely ’appar-
ent’ selective value at a locus, in which case secondary events should
probably be ignored. But it is true that when chromosome segments
are studied directly, which is now possible due to cheap sequencing and
SNP calling, all such events should be included. Stam also points out
that my formula used the equilibrium LD value. I’m not sure that this
assumption makes much difference, owing to the likely large recombi-
nation distances involved.

While on the topic of lengths of identical segments, I’d like to comment
on one aspect that I’m not sure is generally appreciated. There is a
substantial literature on how to infer haplotypes from diploid data (e.g.
Excoffier and Slatkin, 1995 [4]). When sending off one’s own DNA for
sequencing to one of the commercial companies offering this service,
the analysis cannot infer haplotypes, i.e. cannot distinguish which
SNPs are in ’coupling’ or ’repulsion’. Nevertheless when genomes of
related individuals, e.g. cousins, are compared, these companies can
infer which haplotype regions are identical in the two genomes.

I haven’t seen how this analysis is done, but I assume that it must be
at the diploid level. For example, if one individual at a particular site
has SNPs (1, 1) and the second individual has (1, 2), then there is the
potential for identity. On the other hand, if the SNPs are (1, 1) and
(2, 2), then there cannot be identity. If the SNP density is sufficiently
high, it seems that a fairly accurate picture emerges of the length of
shared haplotypes, with only a small margin of error at the ends. The
complexity of analysis of programs such as in [4] seem unnecessary if
all that is required is a pattern of shared haplotypes.

5.3. Argument #3 - Sampling into LIBD classes.
There is another, different, way of looking at the buildup of LD in a
finite population. The figure below defines what I would like to call the
’LIBD classes’ in a population. The population in (b) consists of 2N
gametes. In each of the k classes, the gametes are identical copies of
an ancestral gamete. New classes are created by recombination - each
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recombination event starts a new class. For comparison, the population
in (a) is depicted as being newly set up, with no LIBD between gametes.
After some period of time, the population is as specified in (b). The
size of class i can either be specified as a number, Wi, or as a frequency
wi. Each class is created by a recombination event at some generation
labelled Gi in the figure below.
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We now introduce alleles and allele frequencies into the model, assum-
ing that there is segregation at the A and B loci in population (b). We
call the frequencies of alleles A at the A locus and B at the B locus
pA and pB respectively. The main point of the LIBD argument is to
see to what extent sampling into the LIBD boxes using these current
frequencies can account for the current value of r2.

The initial assumption is for independence of A and B alleles in the
LIBD classes. This is because each class is initiated by a recombination
event that randomises the connection between A and B alleles. So we
ask initially, what is the expected value of r2 given by independent
sampling of A and B alleles into the unequal-sized LIBD boxes as
shown in the figure.
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Figure 9. Sampling into LIBD boxes using the current
allele frequencies

The distribution of class sizes is easily calculated in this model. It is
exactly equivalent to the model of a single infinite allele locus, with
mutation replacing recombination from the two-locus model. By argu-
ments similar to those given above for the recurrence relationship of L
(10), and analogous to the argument of Kimura and Crow [18], the ex-
pected equilibrium value of the sum of squares of the class frequencies,
wi, is

E[
k∑

i=1

w2
i ] =

1

1 + 4Nc

I will first give some calculations that show that random sampling
of alleles into the LIBD classes leads to the approximate relationship
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E[r2] = E[
∑
w2]. Then computer simulation is given showing that

there is an extra historical correlation not taken into account by the
random sampling calculation.

5.3.1. The sampling process.
The first point to note is that the

∑
w2 term arises naturally from

independent sampling into the unequal sized boxes. This is most easily
seen from sampling of a single locus.

Consider a single allele with frequency p. The frequency from sampling
into the classes can be formally written as p̄, where

p̄ =
∑

δiWi/2N =
∑

δiwi

where the summation is over all k classes and where δi = 1 or 0 with
probability p.

The variance of p̄ is equal to p(1−p)
∑
w2 . Compared to sampling into

boxes of size 1, the variance is increased by the factor
∑
w2/2N .

The same increase is true for any linear combination of allele frequen-
cies. This is easily shown for any combination such as c1p1+c2p2.

The correlation is not a linear combination of allele frequencies, but it
turns out to be quite close to one. Accepting linearity, for the moment,
then the expectation of r2 can be written down. Sampling of A and
B alleles into 2N boxes of size 1 gives the variance of r, or E[r2], as
1/(2N−1) or approximately 1/2N . Sampling into unequal sized boxes
increases the variance by a factor of

∑
w2/2N , provided that r is close

to a linear combination of frequencies. The variance of r, or expected
value of r2, is thus

E[r2] =
∑

w2 (19)

5.3.2. Why r is close to a linear combination of frequencies.
I follow the argumenbts of Fisher (1922) [6]. The context of Fisher’s
paper was a dispute regarding the number of degrees of freedom of a
2x2 contingency χ2. Fisher pointed out that the contingency χ2 can
be expressed in the form

χ2
c =

y2

V
(20)
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where

y =
pAB

pA
− paB

pa
=

nAB

nA

− naB

na

(21)

and

V =
nB

2N
.
nb

2N
.(

1

nA

+
1

na

) (22)

I haven’t previously used quite this notation, but I hope it is clear
that nAB represents the number of AB haplotypes, nA represents the
number of A alleles, etc. If there is independence of the A and B
alleles then y has expected value of zero. Assuming that pB and pb are
estimated by nB/2N and nb/2N respectively, then the variance of y
is equal to V . So the RHS of (20) is just an (SND)2, or an ordinary
one degree of freedom χ2. I believe that Fisher’s opponent in this
argument (ES Pearson?) was trying to claim that it should have 3df.
I was brought up in a Fisherian department, partly by the great man
RA Fisher himself, and so my memories on this are perhaps not to be
trusted.

The point of this argument, as regards the expectation of r2, is that
r2 = χ2/2N , so that r2 is also close to being a linear combination of
frequencies. This is exactly the case for the numerator y, if nA and na

are fixed rather than random values. I believe that this is the way that
Fisher thought about the problem. The two sections that immediately
follow are an attempt to follow up on this question of whether it is
legitimate to regard nA and na as fixed values.

5.3.3. fixed number vs. fixed probability sampling. Fixed number sam-
pling, as the name suggests, involves just a permutation exercise of
assigning nA A alleles into 2N boxes. Fixed number sampling makes
little sense if only a single variable is being considered, since the order
is of no consequence. However with a second independent sampling, of
nB B alleles into the 2N boxes, the number of AB haplotypes becomes
a random variable.

For sampling of A and B alleles, there are are therefore three possible
scenarios:
(i) fixed number sampling at both loci
(ii) fixed probability sampling at both loci
(iii) fixed number sampling at one (A locus) and fixed probability sam-
pling at the other.
I believe that it is scenario (iii) that Fisher had in mind. Under this
scenario, the numbers nA and na are indeed constant.
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Does the choice of sampling have any consequences? Computer simu-
lation of these three scenarios was of course not possible in 1922, but it
is easy now. For each of the three I did a quick simulation by sampling
108 replicates of populations of size 2N = 100, with nA = 40 or pA =
0.4, and with nB = 20 or pB = 0.2. Each scenario led to average values
of r2 that were significantly different from 1/2N but indistinguishable
from 1/(2N − 1). For the case of independent sampling of 2N allele
pairs, therefore, fixed sampling at one locus and random at the other
seems no less valid than the usual model of random sampling at both
loci.

5.3.4. fixed number number sampling into unequal boxes. Fixed number
sampling into unequal-sized boxes turns out to be a tricky proposition.
We can, for example, consider the case where we wish to sample 43 A
alleles into 50 boxes each of size 2. It can’t be done.

This is, however, a very artificial case. I have simulated many cases
with unequal-sized boxes, and in most cases where 2N is 100 or even
less it turns out that it is possible to sample any number nA of A alleles
into the boxes in many different ways.

All of this gets rather messy, and I’m not sure whether it is worth
pursuing in any more detail. I’ll go into some detail in the following
section, using computer simulation to test the validity of (19).

5.4. LIBD computer simulation.
The above theory predicts what happens when A and B alleles are sam-
pled into LIBD classes, along with the buildup of LD. Any computer
simulation to test the theory therefore needs to follow both classes and
genes. I have written a haploid Monte-Carlo simulation program that
specifically enumerates each class as it arises through recombination,
and specifies the allele contained in each class at the A and B loci.
In this way one can produce a complete picture of a population show-
ing which individuals belong to the same LIBD class and what their
genotype is.

The theory derived above has not involved any specific mutation pa-
rameters, and the first program considered also does not consider muta-
tion. Each ’run’ of the computer program therefore involves a starting
population, typically something like a 2N = 512 population with ini-
tial haplotype numbers 128 AB, 128 Ab, 128 aB and 128 ab. Each
haplotype initially starts as a separate class. Classes increase in fre-
quency or are lost by chance, and new classes are created each time
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Figure 10. r2 vs. expectation for build-up of LD

a recombination event occurs. Each ’run’ ends with fixation at either
the A or B locus. Usually, but not always, the run ends with some of
the initial classes still present.

The Wright-Fisher process is simulated using sampling with replace-
ment. For each new haplotype, with probability (1 − c) a haplotype is
sampled from the previous generation. With probability c a recombi-
nation event occurs, producing a new class containing A and B alleles
sampled independently from the alleles of the previous generation. The
independence follows from the random mating assumption that ensures
that the non-allelic genes on homologous chromosomes in a diploid in-
dividual are combined at random.

For later use in the calculation, the allele and haplotype frequencies at
the stage of production of each new class are recorded and stored. As a
practical consideration, the continued gain and loss of classes requires
renumbering of the classes at each generation of the simulation.

The first simulation (Figure 10) shows the results from a series of runs
with Nc = 0.5. Calculations of the correlation were made at every
generation initially, then at successively longer generation intervals.
They show the build-up of correlation over time (red squares) compared
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to its expectation given by (11) (thick line). The agreement appears
to be good in early generations, but less so in later generations.

The graph also shows two other statistics. The value of
∑
w2 is shown

using crosses. The expected value of this statistic is the same as for
E[r2]. Surprisingly, since the derivation of E[

∑
w2] involves no ap-

proximations, the observed value dips below its expected value in later
generations.

The reason for this disagreement must be found in the premature termi-
nation of runs where fixation has occurred at either the A or B locus,
at which time r2 becomes indeterminate. From the point of view of
calculating

∑
w2 there is no need to terminate the run. I have con-

tinued the simulation of fixed populations to show agreement between
observed and expected

∑
w2. It seems clear that populations in which∑

w2 is high by chance are more likely to be ones in which fixation oc-
curs early. As mentioned previously, the topic of fixation, and its effect
on the formulae for r2 and

∑
w2, is a difficult one that is considered

further below.

The other curve shown in Figure 10 is the statistic y2, the numerator
of r2 as defined in (21). This closely tracks the value of r2. The curves
given in Figure 10 are based on a large number of replicate runs, more
than 300,000. However the agreement between y and r can be seen from
a much smaller number of replicates. Figure 11 shows a randomly cho-
sen set of 100 replicate populations. The fluctuations are much wider,
particularly towards the later generations where ultimately only 8 pop-
ulations are still segregating in this particular simulation. However y
and r still track each other closely. It is clear that the value 2NV from
(22) plays a reasonably small role in the calculations.

5.4.1. Aside on values of 2NV .
It may seem strange that the value 2NV = nBnb

2N
.( 1

nA
+ 1

na
) should be

close to one. There is one circumstance, however, in which it is easily
shown that this is the case. In the extreme case of r2=1, it must be
the case that either pA = pB or pA = pa. In either case, it is seen that
2NV is equal to unity.

Figure 12 shows the results from a joint plot of the values of r2 and 2NV
over 1,000 replicate populations at generation 1024 for the caseNc = 1.
The graph plots ln(2NV ) because of the high range of values that 2NV
can take. However it is clear that such high and low values can occur
only in the range of very low r2 values. In the parts of the range
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where high values of r2 occur, the value of V is constrained to close to
ln(2NV ) = 0 or 2NV = 1. It is precisely these high values of r2 that
contribute strongly to the mean value.

5.4.2. Sampling into LIBD classes.
The simulation of classes and frequencies gives us an opportunity to
check on the theory derived above for sampling into LIBD classes. Each
time r2 and the wi values were calculated in a population, an additional
sampling operation was carried out in which populations were made up
by sampling A and B alleles randomly into the existing LIBD classes.
Furthermore this sampling was done in two ways.
(a) Alleles were sampled into each class with the same probability as
the allele frequency when the class was created. The r2 statistic was
then calculated for each population, and designated as r2(S).
(b) Alleles were sampled into each class with the probability given by
the current allele frequency. This statistic was designated r2(T ).

Results are shown in Figure 13 . The values of r2(S) (orange circles)
and r2(T ) (blue diamonds) differ substantially. What’s somewhat dis-
tressing, however, is that the values of r2(S) depart so markedly from
the values of r2. Here we are sampling into the exact same classes
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Figure 13. Comparison of sampling methods against r2
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as used to calculate r2, using the exact same allele frequencies from
the population at the time that sampling for the new LIBD class took
place. So what’s going on?

One clue comes from the fact that by the time there is a noticeable
discrepancy between r2(S) and r2, fixation has started to occur. A
second graph (Figure 13) expands the early generations, showing the
divergence coinciding with the start of fixation.

Figure 14. Early generations of Figure 13

The discrepancy can be rationalised in a similar manner to that argued
above to explain the discrepancy between

∑
w2 and its expectation.

Fixed populations tend to be the more extreme ones. Eliminating these
brings in a bias.

It is possible to investigate the effects of bias by continuing the fixation
of populations beyond the point of fixation. Values of r2 cannot be
calculated in such cases and must be omitted. However many of the
fixed populations will give a determinate result for r2(S), based on older
LIBD classes started before fixation occurred. Figure 15 shows the
results from one such simulation, having the same starting parameters
as Figure 13. The discrepancy between r2(S) and r2 is reversed in this
case. Extreme r2(S) values are found in later generations, where few
LIBD classes contribute segregating alleles.
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Figure 15. r2(S) plot including cases of fixation

The important comparison for present purposes is between r2(S) and
r2(T ) in Figure 13. This is repeated in Figure 16. Note that r2(T ) is
undefined for fixed populations, so that this comparison can only be
made for the unfixed case. The discrepancy between these two statistics
is highly significant. It shows that the assumption of sampling into
LIBD classes with current frequencies, as assumed in the calculation
leading to (19), introduces a substantial error.

Figure 16 also shows a second illustration of this effect. Plotted in green
triangles is the calculation of r2 but weighted so that each LIBD class
contributes only a single observation, rather than a number weighted by
the size of the class. This r2[1] statistic is a test of whether the frequen-
cies are uncorrelated between classes, as assumed in the derivation of
(19). Again this assumption is shown to be substantially inaccurate, as
the value of r2[1] rises steadily over the course of the simulation.

It is convenient to introduce the term ’Historical Correlation’ to de-
scribe this effect. Over the course of time, allele frequencies fluctuate.
It doesn’t matter whether the frequencies at the A and B loci go up or
down together or in opposite directions, classes started over a particu-
lar time span will tend to be closer to each other than classes started
at more distant times, and this will introduce a correlation. This r2[1]
statistic exaggerates the effect, as each population will usually contain
a few very recent LIBD classes that contribute strongly to r2[1] but
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Figure 16. r2(S) versus r2(T ) and r2[1]

contribute little to r2 because they are recent and therefore likely to
have small weights.

I’m not sure that anyone has specifically written about this historical
correlation, but Bill Hill in a letter to me many years ago described an
effect that I think was essentially this, although I did not understand
it at the time. And McVean [20] has written: ”Also note that the
identity coefficient approach of Sved (1971) is quite different from that
presented here, because he implicitly assumes that allele frequencies
remain constant over time.”. I suppose that he has the same idea,
although I think that the key here is more that the allele frequencies
are correlated rather than that they are constant.

5.4.3. Some concluding remarks.
It seems clear that the value of r2 in a population has a contribution
from two sources:
(1) The size of the LIBD classes
(2) The historical correlation

I can’t presently see an easy way of seeing how these two combine to give
the value of r2. But I also can’t understand why the formula for E(r2),
which ostensibly ignores the historical correlation, should give such a
good agreement with the observed values. This despite the fact that
there is a substantial disagreement between sampling into the LIBD
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classes using the actual frequencies and the present allele frequencies
(r2(S) and r2(T ) of Figure 13). I’d be grateful for suggestions on these
points.

6. LD UNDER A MUTATION MODEL

The simulations reported in Figure-10 and below are all started with
high frequencies of both alleles, usually 0.5. This is of course an un-
realistic starting condition, chosen partly to minimise the amount of
fixation during the simulation.

6.1. LD at first appearance of a mutation.
The realistic starting condition in a neutral model is following the first
appearance of an allele after a mutation event. I will assume that a new
mutation occurs at the B locus. Any neutral linked segregating A locus
can be assumed to be at a frequency determined by population size and
mutation rate. If the mutation rate is constant, however, the frequency
of mutant alleles at the A locus turns out to be very close to a reciprocal
distribution, dependent on the population size and independent of the
mutation rate (Fisher, 1930). In other words, the probability that an
individual has n copies of the A allele is proportional to 1/n, and can be
expressed as T/n, where T = 1/

∑
(1/n), the summation going from

n=1 to n=2N-1.. The small exception to this is in the penultimate
classes, those with 1 or 2 and 2N − 1 A alleles, where the frequencies
are slightly reduced below expectation.

I have simulated this situation for values of 2N=1024 and 2N=16,384
and 2Nu= 1 and 1/4, and the results have been precisely in accord with
Fisher’s expectation. I find Fisher’s derivation entirely obscure, but it
is remarkable that he should so long ago have given the solution to the
distribution under what is now known as the ’infinite sites mutation
model’. Fortunately more recent derivations, at least of the reciprocal
distribution, are somewhat easier to follow (see eg. Ewens, 1979, Eqn
5.23).

The important conclusion from this result is that the new B mutation
will usually occur in a population with few A mutant alleles and many
a alleles. The overall probability that the mutant A allele will be less
frequent than the a allele is
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Figure 17. Population configuration after a single B mutation

P =

∑N
n=1

1
n∑2N

n=1
1
n

which is approximately

ln(N)

ln(N) + ln(2)
(23)

which is reasonably close to 1 for large N.

It is now necessary to specify whether the new B mutation occurs in
a gamete containing the ancestral a allele or in one containing A. The
two possibilities are shown in Figure 17. Also shown in this figure are
the values of r2. If n is small, as discussed above, the r2 value for
mutation alongside the a allele is small, approximately n/(2N)2, while
for A the r2 value is relatively large, approximately 1/n.

On average, therefore, the common B mutation will lead to a low value
of r2 and the rare mutation will lead to a high value. The remainder of
this section is devoted to quantifying this effect. First, however, it is
necessary to qualify Figure 17 in two ways. First, this formulation does
not take into account the fact that n is sometimes high. Secondly, the
question of interest is not whether the B mutation occurs in the A or
a gamete, since in practice the mutant and ancestral alleles cannot be
distinguished. Rather it should be directed at the relative contribution
to r2 of the common and rare B mutations.
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Figure 18. Probabilities of the various population configurations

Figure 18 extends Figure 17 to take these factors into account. First,
it concentrates on ’common’ and ’rare’ alleles at the A locus, rather
than specifically on a and A alleles. These headings imply that the
value of n must lie in the range 1 to N . Secondly, it considers the
B mutation in both A classes. The population genotypes in the two
bottom populations are identical to those in the top with the A and a
alleles permuted. However the frequencies of the two classes, shown in
blue, are not the same - T/n and T/(2N − n) respectively.

The probabilities of B mutation in the two A classes, (2N − n)/2N
and n/2N respectively, are shown in red. These are multiplied by the
respective probabilities of the A and a configurations, and then summed
to give the overall probabilities T/n and T/(2N−n) respectively, shown
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in purple in Figure 18. These probabilities are identical to the mutant
and ancestral class frequencies. It is hard to see intuitively why this
should be the case.

The overall probability of mutation in the common class can be ob-
tained by summing T/n over all classes where the B mutation occurs
in the common class, ie. n in the range 1 to N . This leads to the same
result as given previously (23):

ln(N)

ln(N) + ln(2)

The more important calculation concerns the mean value of r2 given by
common and rare B mutations. Taking into account the r2 values given
in Figure 17, the mean value for common mutations is equal to

T

n
.

1

2N − 1
.

n

2N − n

=
1

2N − 1
.

T

2N − n

while the mean value of r2 for rare mutations is equal to

T

2N − n
.

1

2N − 1
.
2N − n

n

=
1

2N − 1
.

T

n

Thus the values of r2 are identical to, but reversed from, the probabil-
ities of the two mutation classes, in each case multiplied by the factor
1/(2N − 1). The rare mutations contribute more to r2. Overall the
contribution from rare mutations is again equal to

ln(N)

ln(N) + ln(2)

multiplied by the factor 1/(2N − 1). The overall sum of r2 from both
common and rare mutations is equal to 1/(2N −1) (Ohta and Kimura,
1969) [23].

6.2. Subsequent generations.
The following calculation deals with just the simplest possible case, the
first generation of buildup of LD when there is no recombination. The
simplification here is that there are only three possible genotypes. It is
then convenient to describe the possible offspring populations in terms
of nA and nB, the numbers of A and B alleles respectively. The left
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Figure 19. Genotypes following one Wright-Fisher generation

side of Figure 19 shows the common mutation, where the AB class is
absent. Since the initial frequencies of the Ab, aB and ab classes in the
parent population are n/2N , 1/2N and 1−n/2N − 1/2N respectively,
the probability of obtaining the genotype configuration of the offspring
population is

2N !

nA!nB!(2N − nA − nB)!
(
n

2N
)nA .(

1

2N
)nB .(1− n

2N
− 1

2N
)2N−nA−nB

This expression needs to be multiplied by the associated value of r2,
nA

2N−nA
. nB

2N−nB
(Figure 19). The expected value of r2 is then given by

summing this quantity over all possible values of nA and nB.

There is no exact simplification of this expression containing terms in
2N − nA and 2N − nB in the denominator. However if each these
terms is replaced by 2N , which leads to only a small underestimation,
the expression simplifies to n/(2N)2, approximately the same value as
found in the initial generation in Figure 17.

This result suggests that there is no increase in the value of r2. However
this is misleading, because the result is averaged over all populations,
including the case of nA = 0 and nB = 0. The values of r2 shown
in Figure 19 for this case are equal to zero. In reality, the values are
undefined, since the derivation of r2 for nA = 0 or nB = 0 involves a
division of zero by zero. The true mean value of r2 needs to be divided
by the probability of obtaining unfixed populations. The probabilities
of non-zero values of nA and nB are dominated by the B probability,
since there is initially only one B mutation. The probability of fixa-
tion after one generation at the B locus is approximately e−1, so that
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the value of r2 amongst unfixed populations is increased by the factor
1/(1 − e−1).

The equivalent result for the case of a B mutation in the rarer A geno-
type can be calculated in the same way. The r2 value in this case is
equal to

2N − nA

nA

.
nB

2N − nB

As previously, 2N − nA and 2N − nB are each replaced by 2N . In
addition, nA in the denominator needs to be replaced by its expected
value n, which may involve a somewhat higher degree of approxima-
tion. With this substitution, the sum simplifies to 1/n, which is again
approximately the value as found in the initial generation in Figure 17.
As previously, the sum needs to be corrected for unfixed populations
by dividing by the the factor 1 − e−1.

In summary, the r2 values for both classes of population are expected to
increase simply by the factor representing the probability that fixation
has not occurred. The following section presents computer simulation
to test this expectation.

6.3. Computer simulation.
I have written a Monte-Carlo simulation program to generate new mu-
tations at an infinite number of sites. Essentially this means an infinite
number of sites at each of two loci as shown below (there are actually
three loci, in order to check on some 3-locus statistics but this is not
relevant here):

New mutations are generated randomly, generally one per generation.
Each new mutation starts a new site, randomly chosen from one of
the two loci. Because of the finite size of the population, sites are
regularly lost, thereby preventing the number of sites from increasing
beyond limit. This does involve renumbering of sites each generation.
Sites are lost when the new mutation is either lost or fixed in the
population. The rate of fixation per generation is monitored to make
sure that it agrees with the rate of mutation per individual (Kimura,
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Figure 20. Observed and expected values of r2 over 8
generations following production of a new mutant. Pop-
ulation size (N) is 256.

1970). At certain intervals, the value of r2 is calculated and the results
are cumulated.

Two graphs showing observed and expected are in Figure 20 and Fig-
ure 21. Note that the scale of r2 values is very different in the two
cases.

The expectations labeled Expected (unfixed) are calculated as follows.
The expected value in generation 1 is taken as 1/(2N-1). Thereafter the
expected values are calculated by dividing this figure by the proportion
of populations left unfixed. The values shown as Expected (LIBD) are
calculated using the LIBD-derived recurrence relationship (11).

The calculated (observed) values from the simulation lie slightly be-
low their expectation in each of the two graphs. This is evidently
because of the approximations in the trinomial calculation. However
the expectations calculated by correcting for unfixed populations are
clearly much closer to the observed values than the expectations from
the LIBD calculation.

Figure 22 shows the results after many generations. An intermediate
value of N (1024) is used here, and the simulation is extended until
near complete fixation. The expected value in this case comes just
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Figure 21. Observed and expected values of r2 over 8
generations following production of a new mutant. Pop-
ulation size (N) is 16,384.

from the LIBD equation. Expectations given by correcting for unfixed
populations become increasingly unreliable after the first few genera-
tions.

The general shapes of the observed and expected curves are similar,
although by no means identical. As argued above in connection with
figures 20 and 21, agreement is not even expected in the early stages,
where fixation dominates the process. Somewhere after the mutation
reaches a sufficiently high frequency, the LIBD-derived expectation be-
comes more accurate than the fixation expectation. It appears, though,
that there is a second fixation-based discrepancy between observed
and expected values at the high end of the range where fixation is
almost complete, which the LIBD expectation does not take into ac-
count.
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